
Interfacing the ESL Simulation Language
to the Virtual Test Bed

John G Pearce
ISIM International Simulation Limited

161 Claremont Road
Salford, M6 8PA, UK

mailto:johnpearce@isimsimulation.com

Keywords: Virtual Test Bed, VTB, European
Simulation Language, ESL, Continuous System Simulation

Abstract
A preliminary investigation into the design of an

interface between the ESL Simulation Language and the
Virtual Test Bed (VTB) is described. It is proposed to use a
standard feature of ESL that allows an ActiveX COM object
to be generated from an ESL embedded segment structure.
The COM object may be accessed form a VTB ESL
wrapper entity. An initial limited functionality wrapper has
been written and, using a simple single-input single-output
model, provides proof of concept. In preparation to test a
fully functional interface, an ESL simulation of an
autonomous mobile robot simulation has been adapted and
validated using a Matlab program. Output from the robot
simulation has been successfully used to generate a three
dimensional animation of the robot walking over a terrain
using the VTB Visualization Extension Engine (VXE).

1. INTRODUCTION

The Virtual Test Bed (VTB) is a software environment
for developing simulations of large scale multidisciplinary
dynamic systems. It allows alternative designs to be
analysed and tested before being committed to manufacture.
The main application that is driving the development of the
VTB is a need to model advanced power systems for navy
ships. In such systems there are many different energy
generation and storage devices including nuclear, fuel cells
and gas turbines. The distribution networks are also of
unconventional design having dc power busses and high
numbers of interconnections that can be rapidly
reconfigured. Constructing complete coherent simulations
of such large scale systems, involving widely differing
technologies poses a serious challenge. Each discipline
group will use their preferred simulation tool to model their
part of the whole system. The VTB aims to satisfy this
challenge by providing a common platform in which
component models developed by different teams using
different tools can be merged. The VTB also includes the
Visualization Extension Engine (VXE) for interactive 3D
display of simulation data.

ESL [Pearce and Crosbie 2000] is an advanced high-
level simulation language for modelling large-scale systems
from a variety of disciplines. ESL is an acronym of the
European Simulation Language (originally European Space
Agency Simulation Language) and comprises two
components: the language itself and a graphical user
interface - the Integrated Simulation Environment (ISE).
ESL is a continuous system simulation language and is used
for modelling dynamic systems which are usually described
by ordinary and partial differential equations. ISE provides
the environment from which all stages of the simulation
process can be managed. The software was developed
mainly through a series of contracts with ESTEC - the
European Space Research and Technology Centre - part of
ESA with additional support from various industrial
simulation consultancy activities.

This paper describes the progress made so far in a
project to interface ESL to the VTB so as to allow ESL
models to be used within VTB simulations.

2. BACKGROUND TO ISIM AND ESL

The ESL project began in 1979, as a research contract
between ESTEC and Salford University Business Services
Limited (SUBSL) - the commercial wing of the University
of Salford. The objective of this contract was to evaluate
simulation algorithms for parallel computer architectures.
The main outcome of the contract was the specification of a
new simulation language which included a parallel
processing capability. The specification also included other
novel features such as a hierarchical submodel structure and
special statements for describing discontinuous functions.
There followed a series of ESTEC contracts to implement
and enhance the language, and so ESL was born. Each
contract added some new feature or functionality leading to
an advanced robust simulation language which was used for
a number of years by ESTEC for modelling aspects of
satellite and spacecraft systems.

1986 saw the establishment by the late John Hay of
ISIM Simulation as a division of SUBSL with the express
purpose of marketing ESL and simulation expertise.
Several UK and European companies began using ESL.

The company, ISIM International Simulation Limited,
was founded in 1992 and development of ESL continued
with the addition of a graphical user interface, allowing
diagrammatic model input.

In 1996 earlier links between ISIM and Cogsys Limited
(a Salford based software engineering company) lead to
collaboration on the design of the new graphical interface
(ISE) and improved precision. ESL 7.0, was launched in
2000 at the WMC in San Diego [Pearce and Crosbie 2000]
and the current version, ESL 8.0 was released in 2004.
There is also a limited Linux release of the ESL core
language programs but excluding the graphical user
interface and plotting.

ESL was originally developed for the space industry,
some examples of space related applications are:
Giotto – simulation of the control system for the antenna de-
spin mechanism of the Harley’s comet probe.
HST - a study of thermally induced vibrations as the
telescope solar panels pass into and out of eclipse.
ERS - a major simulation of satellite based batteries with the
objective of on-line optimization of power usage during
charge and discharge cycles [Hay 1987].
XMM, MOLISOVA, Artemis - an on-going series of uses of
ESL to simulate the dynamic parts of test environments for
validating on-board satellite software [Bonillo et al 2000],
[Holliday 2000].

However, ESL is a general purpose tool and not

restricted to the space sector. Some examples of recent non-
space applications include:
Off-shore Gas-Rig training Simulator - here ESL provided
the underlying dynamic model for a training simulator. The
ESL model was embedded in a COGSYS [Davison and
Kraft 1990] program which managed the training scenarios
and graphics.
Gas Compressor Station Simulation - an on-line real-time
simulation for validating the compressor control systems
during commissioning [Kraft and Pearce 2000].
Rapid Gravity Water Filter simulation - a customised water
treatment works simulation tool for optimising filter bed
management [Pearce et al. 2000], [Appleton et al].

3. THE ESL SIMULATION TOOL

The ESL Language itself is a traditional continuous
system simulation language (CSSL) and has the following
particular features:

Robustness - “a simulation engine that runs forever”
Extensive model “correctness” checking;
Accurate discontinuity treatment;
Vector and matrix arithmetic;
Submodel concept;
Parallel segments (distributed simulation);
Embedded simulation, ActiveX COM interface;
Real-time capability.

An ESL program may be run in an interpretive mode
or, for faster execution translated and compiled, as shown in
Figure 1.

The Interactive Simulation Environment (ISE) provides
a graphical interface for managing each stage of the
simulation activity. This includes a graphical editor for
block diagram model descriptions. Textual ESL code may
also be used where appropriate – for example, to describe
highly non-linear elements. The simulation can then be
executed immediately through an interpreter, or further
translated, compiled and built into an executable program.
In either case, execution is managed by an interactive
control panel which provides run-time control of the
simulation. All program variables and parameters can be
accessed from the control panel when running the
simulation. Graphical and tabulated output on the block
diagram can be specified through the use of special
simulation display elements or alternatively from a versatile
display manager window. Run time commands and output
specifications can be logged to a driver file and used at a
later time to repeat simulation scenarios.

4. ESL – VTB INTERFACE

The question to be addressed is how to integrate ESL
into the VTB, or, more precisely, how to enable ESL
models to be included in a VTB simulation. First it is
necessary to understand the different ways in which VTB
models (or model entities) are created. Model entities may
be interactive or compiled. Interactive entities are built and
executed at the VTB software run-time, while compiled
entities are typically created by some other computer
languages that require compilation of the entity’s code.
Interactive entities can be easily modified at run-time but
execute much slower than compiled entities. Another
consideration is the type of coupling. The VTB supports two
types of coupling – signal and natural. Signal coupling is
used in traditional block-diagram system descriptions when
connections between elements represent signal flow in one
direction, for example, a voltage output from a power
supply or a load torque input to an electric motor. Natural
coupling enforces physical conservation laws and entities
are connected through ports which have associated across

ESL Program

Compiler

H-Code

Interpreter

ESL Lib
C++/ Fortran

Comp/Link

Executable
Ext Lib

Translator

ESL ProgramESL Program

CompilerCompiler

H-CodeH-Code

InterpreterInterpreter

ESL LibESL Lib
C++/ FortranC++/ Fortran

Comp/LinkComp/Link

ExecutableExecutable
Ext LibExt Lib

TranslatorTranslator

Figure 1 ESL execution routes

and through variables, e.g. voltage and current in the case of
an electrical terminal. Currently ESL supports only signal
coupling.

The VTB provides access to external models in a
number of ways. These include wrapper entities and user
defined devices (UDDs). Wrapper entities provide the
interface to models created in other simulation software,
such as Simulink, Matlab or ACSL. The UDD software,
which is part of the VTB development kit, creates C++
source code for the model, which can then be compiled and
used as a native VTB entity.

A feature of ESL is that models can be specified as
embedded segments which, when translated into C++ and
compiled, can be built into or embedded in an external C++
program. The embedding program is able to call the
embedded ESL model to initialise it, then repeatedly to
advance the simulation one time-step at a time. Data
communication with the embedded model is achieved
through C++ classes corresponding to ESL package
structures. Further, an ActiveX COM object can be created
from an ESL embedded segment. In this case the model is
initialised and run by invoking appropriate object methods
and transferring data through its properties.

Considering the alternative methods, it appeared that
the simplest way of including ESL models in VTB
simulations, would be through the use of wrapper entities
which would access ESL models in COM object form. This
could be achieved either: by writing a generic ESL wrapper
which would be associated with a specific ESL model at
VTB run-time by specifying the model name as a wrapper
parameter; or by creating a specific ESL wrapper for each
ESL model before running VTB. The former approach is
described in this paper.

5. THE ESL COM INTERFACE

The ESL COM interface is described in the following
tables:
5.1. Methods

The embedded segment COM methods are listed in
Table 1.

Table 1 ESL COM properties
Name Meaning

ExStrt Prepare embedded code for use - must only
be used once at program start.

ExInit Initialise embedded segment for a single
simulation run.

ExSim
Advance Simulation by one time-frame
(specified by the simulation parameter
CINT).

ExFin Close down simulation - must only be used
once at program termination.

5.2. Properties
Table 2 shows the simulation parameters are properties of
the top-level embedded segment COM object.

Table 2 ESL simulation parameters

Parameter Default
value Meaning

T Current value of time.

Tstart 0.0 Initial value of time (T) at start
of run.

Tfin 10.0 Final value of T at end-of-run.

Cint 1.0 Communication interval –
must be same as VTB.

Diserr 0.0001 Discontinuity detection error
tolerance.

Interr 0.001 Integration error tolerance.

Algo 1 (RK5) Integration algorithm (8
algorithms are available).

Nstep 1 Minimum number of
integration steps in CINT.

The model input and output variables are made

accessible to the calling program by defining them in named
ESL package structures (Esl_inp and Esl_out). These
variables then appear as properties of the COM object.
Similarly any model parameters are defined in an ESL
package – Esl_par and these also appear as COM object
properties. Note that the simulation parameters (Tfin, Cint
etc) are direct properties of the COM object whereas the
interface variables and model parameters are parameters of
the sub-objects – Esl_inp, Esl_out and Esl_par.

Thus to run an ESL COM model, ExStrt is first invoked
to initialise the software, after which the simulation
parameters and model parameters can be changed or set
through the COM properties. ExInit is then invoked to
initialise the simulation. This must be repeated each time the
model is initialised before a new run. ExSim is then invoked
repeatedly to advance the simulation at time-frame. Finally
ExFin is invoked to terminate the simulation.

6. EXAMPLE

In order to test these ideas, a very simple single-input,
single-output (SISO) ESL model was prepared. The ESL
source code is presented Figure 2.

This model has I/O variables in and out and simply
introduces a first-order lag between the input and output. It
has two model parameters – out0 (initial value of out) and
tau (the lag time constant). Note the definition of the
interface variables and model parameters in the ESL

Figure 3 ESL wrapper object in VTB

packages and the starting keyword embedded to force
creation of an ESL embedded segment, from which the
COM object can be subsequently generated. In addition to
directly writing source code, ESL allows a graphical block-
diagram model specification, in which the packages may be
readily defined.

embedded
package esl_inp;
 real: in;
end esl_inp;
package esl_out;
 real: out;
end esl_out;
package esl_par;
 real: out0/0.0/,tau/0.6/;
end esl_par;
segment embed;
use esl_par, esl_inp, esl_out;
real: y;
initial
 y:=out0;
dynamic
 y':=-(y-in)/tau;
communication
 out:=y;
 tabulate " ",t,in,out;
 prepare " ",t,in,out;
end embed;

Figure 2 ESL embedded segment for VTB

7. TESTING AND RESULTS

The original idea was to write a generic ESL wrapper,
from which the specific ESL model would be specified as a
parameter at the VTB run-time. This furnishes the wrapper
code with sufficient information to locate the COM object
program identifier from the registry and hence access its
methods and properties. However this posed several
problems, one being that the number of interface variables is
not known until VTB run-time and VTB 2003 does not have
the capability of dynamically changing the number of
connections to a wrapper icon in a schematic. In the first
instance, therefore, a basic wrapper was written that was
hard coded to access the specific ESL model. Although this
fell short of the ideal, it allowed the mechanisms to be tested
and provide “proof of concept”. Figure 3 is a screen dump
showing the appearance of the ESL wrapper in a VTB
schematic together with graphical output generated in the
Visual Extension Engine (VXE).

8. ESL – VTB DEMONSTARTION APPLICATION

In order to evaluate an ESL-VTB interface more fully
and provide a measure of performance, a more substantial
application was required. To this end, an existing ESL

simulation of a six legged walking robot – “Genghis” [Hay
et al 1994] – was modified to be run under the VTB.

The simulation was originally undertaken under an
ESA contract to demonstrate ESL’s distributed and real-
time simulation capability. The simulation comprised a
kinematic model of the autonomous robot (which included
edge avoidance, mutual avoidance and tracking algorithms);
an interactive graphical control panel, from which the
robot’s speed and direction could be controlled; and a main
module which coordinated the other components and
generated graphical data for a 3D visualization. For the ESA
contract the simulation ran on Sun workstations – two
instances of the robot model plus two corresponding control
panels were supported, each (in principle) running on
different networked computers. A separate Silicon Graphics
computer graphically rendered the model using VISTA
software written by EADS-CASA of Spain. The robots had
the capability of simultaneously negotiating an arbitrarily
defined uneven terrain while tracking a moving target, or
each other. Figures 4 and 5 show the original architecture
and the appearance of the robot and control panel as
rendered by the Silicon Graphics computer.

ESL remote segments (Sun workstation)

Main
model

Robot 1
segment

Robot 2
segment

Control
panel 1

Control
panel 2

AnimationESL model
(Sun workstation)

Vista –
(Silicon-graphics)

ESL remote segments (Sun workstation)

Main
model

Robot 1
segment

Robot 2
segment

Control
panel 1

Control
panel 2

AnimationESL model
(Sun workstation)

Vista –
(Silicon-graphics)

Figure 4 Original Genghis architecture

Two architectures were considered for the

demonstration -
• A single VTB model with one robot as a remote

segment and one control panel as a remote
segment.

• Three VTB models comprising a main model
which generates graphical data, one robot model
and one control panel model.

The first option simply calls a single entity from the
VTB (the main embedded segment) and would not, as such,
result in a very interesting VTB schematic (there would be
no interconnections between models). However, it retains
the ESL distributed simulation capability (the control panel
and robot are run as remote segments, potentially on
different computers).

The second option would entail three ESL entities in
the VTB schematic with multiple connections and therefore
provide a better test of the ESL-VTB interface.

These architectures are shown in Figures 6 and 7.

VTB
schematic

VXE

Main model
(embedded
segment)

control panel
(remote

segment)

robot (remote
segment)

ESL
VTB

schematic

VXE

Main model
(embedded
segment)

control panel
(remote

segment)

robot (remote
segment)

ESL

Figure 6 Single VTB model – two remote segments

VTB
schematic

VXE

Main
(embedded
segment)

ESLRobot
(embedded
segment)

Control panel
(embedded
segment)

VTB
schematic

VXE

Main
(embedded
segment)

Main
(embedded
segment)

ESLRobot
(embedded
segment)

Robot
(embedded
segment)

Control panel
(embedded
segment)

Control panel
(embedded
segment)

Figure 7 Three VTB models

Because a fully functional ESL wrapper was not

available at this time, both architectures were validated
using a Matlab program in place of the VTB schematic. The
Matlab program calls the ESL segments exactly as they
would be called from VTB schematic. For second
architecture the Matlab program performs transfer of input
and output variable values between ESL embedded
segments, replicating the interconnections that would appear
on the VTB schematic. The Matlab program generates text
file streams of position and orientation data for VXE,
allowing an off-line visualization of the robot to be
presented. The appearance of the walking robot is shown as
a screen dump in Figure 8. As can be seen, at this stage in
the project, the rendering of the robot components has been
greatly simplified for this exercise.

Figure 8 Genghis walks in the VTB

The panel on the left of the window shows the data

streams generated from the Matlab program which are used
to drive the animation. The panel on the right shows the
hierarchical relationships between the robot components.

Figure 5 Genghis on Silicon Graphics display

9. DISCUSSION
ESL is a powerful simulation tool with a proven track

record in a number of major applications. Its particular
strengths lie in the rigorous simulation language that
underlies graphical or textual models; its accurate treatment
of multiple discontinuities and its parallel processing
capability provided by the segment structures. With the
emulated parallel mode, multi-rate simulations can be
undertaken thus maximizing computer resources.

The embedded segment-COM interface is the key to
integrating ESL models into the VTB. This preliminary
study has demonstrated the practicality of the approach and
also raised a number of issues: With the approach used, the
number of I/O connections to be shown on an ESL element
in a VTB schematic is not known until the model name is
specified. It also proves problematic for the wrapper
software to dynamically access a different COM server for
each ESL model. A single generic ESL COM server might
be the answer (as with the Matlab interface). Array I/O ports
could be used to multiplex multiple connections. An
alternative approach might be to generate a specific wrapper
entity for each ESL COM model, with the required I/O,
prior to loading it into the VTB.

The Genghis robot simulation promises to be a suitable
demonstrator for an ESL-VTB interface once the remaining
problems have been addressed. Tests have shown that it
generates an interesting 3D visualization which will be
enhanced once user interaction has been added.

10. CONCLUSIONS

Significant progress has been made towards interfacing
the ESL simulation language to the Virtual Test Bed. A
wrapper approach has been investigated and, using a simple
SISO model, proof of concept has been demonstrated. The
work has highlighted a number of issues for further
consideration and helped identify alternative strategies. A
substantial application (a simulation of an autonomous
walking robot – Genghis) has been developed as a
demonstrator in readiness to validate a full ESL-VTB
interface.

Acknowledgements
The author wishes the thank Antonello Monti and

Aalhad Deshmukh of the Department of Electrical
Engineering at the University of South Carolina for their
helpful advice and for writing the ESL wrapper software.

References
Appleton, A., Davison, S. and Pearce, J.G. 2001.

“Rapid Gravity Filter Modelling”. In Proceedings of the
2001 International Conference on Advances in Rapid
Granular Filtration in Water Treatment, (London, UK, April
4-6). CIWEM, London, UK, 23-32.

Bonillo, C., Vega, E. and Mejnertsen, S. 2000. "Flight
Dynamic System Modelling using ESL". In Proceedings of
the 2000 International Conference on Simulation and
Multimedia in Engineering Education, (San Diego, CA, Jan
23-27). SCS, San Diego, CA, 127-132.

Crosbie, R.E., Hay, J.L. and Pearce, J.G. 1981..

"Simulation Studies with Modern Computer Structures".
Final Report, (ESTEC Contract 4155/79), ESTEC,
Noordwijk, The Netherlands.

Davison, S. and Kraft, R.J. 1990. “COGSYS: Real-time

Decision Support for Process Control”. In Proceedings of
the 10th International Workshop on Expert Systems and their
Applications”. (Avignon, France, May).

Hay, J.L. 1987. "ESL Simulation of Spacecraft Battery

Cells". In the 1987 Proceedings of the UKSC Conference on
Computer Simulation, (Bangor, UK, Sept 9-11).
UKSC/SCS, Ghent, Belgium, 92-97.

Hay, J.L., Pearce, J.G., Crosbie, R.E. and Pallett, S.

1994. “ESL Simulation Tool”. Final Report, (ESTEC
Contract 10011/92/NL/JG Work Order No. 2), ESTEC,
Noordwijk, The Netherlands.

Holliday, P. 2000. "XMM ACC Environment

Dynamics Simulation for SVF". In Proceedings of the 2000
International Conference on Simulation and Multimedia in
Engineering Education, (San Diego, CA, Jan 23-27). SCS,
San Diego, CA, 133-138.

Kraft, R.J. and Pearce, J.G. 2000. "Using ESL in an

Integrated Real-Time Compressor Simulation Application".
In Proceedings of the 2000 International Conference on
Simulation and Multimedia in Engineering Education, (San
Diego, CA, Jan 23-27). SCS, San Diego, CA, 121-126.

Pearce, J.G. and Crosbie, R.E. 2000. "ESL-ISE - A

Simulation Tool Developed for the Space Industry". In
Proceedings of the 2000 International Conference on
Simulation and Multimedia in Engineering Education, (San
Diego, CA, Jan 23-27). SCS, San Diego, CA, 115-120.

Pearce, J.G., Davison, S. and Appleton, A. 2000.

“Rapid Gravity Filter Modelling in the Water Industry”. In
Proceedings of 2000 European Simulation Symposium
(Hamburg, Germany, Sept 28-30). SCS, San Diego, CA,
499-503.

ISIM International Simulation Limited

http://isimsimulation.com

The Virtual Test Bed – http://vtb.engr.sc.edu/

